GROUP ALGEBRA MODULES. IV

BY
S. L. GULICK(1), T.-S. LIU(1) AND A. C. M. VAN ROOIJ

Abstract. Let Γ be a locally compact group, Ω a measurable subset of Γ , and let L_{Ω} denote the subspace of $L^1(\Gamma)$ consisting of all functions vanishing off Ω . Assume that L_{Ω} is a subalgebra of $L^1(\Gamma)$. We discuss the collection $\mathfrak{R}_{\Omega}(K)$ of all module homomorphisms from L_{Ω} into an arbitrary Banach space K which is simultaneously a left $L^1(\Gamma)$ module. We prove that $\mathfrak{R}_{\Omega}(K) = \mathfrak{R}_{\Omega}(K_0) \oplus \mathfrak{R}_{\Omega}(K_{abs})$, where K_0 is the collection of all $k \in K$ such that fk = 0, for all $f \in L^1(\Gamma)$, and where K_{abs} consists of all elements of K which can be factored with respect to the module composition. We prove that $\mathfrak{R}_{\Omega}(K_0)$ is the collection of linear continuous maps from L_{Ω} to K_0 which are zero on a certain measurable subset of K. We reduce the determination of $\mathfrak{R}_{\Omega}(K_{abs})$ to the determination of $\mathfrak{R}_{\Gamma}(K_{abs})$. Denoting the topological conjugate space of K by K^* , we prove that K_0 is isometrically isomorphic to $\mathfrak{R}_{\Omega}(K^*)$. Finally, we discuss module homomorphisms K from K into K into K such that for each K vanishes off K.

1. Introduction. Once again we come back to the question of module homomorphisms which began our investigation of group algebra modules in the first place ([3] and [4]). The present paper descends from both these papers. If Γ is a locally compact group, $L^1(\Gamma)$ the Banach space of integrable functions on Γ , and if K is a left $L^1(\Gamma)$ module, we studied in [3] the collection of module homomorphisms from $L^1(\Gamma)$ into K, from a rather abstract vantage point. On the other hand, if Γ acts on a locally compact space X as a transformation group, m_X is a positive Radon measure on X quasi-invariant with respect to Γ , and if $L^1(X)$ is the Banach space of integrable functions on X, we showed in [4] that $L^1(X)$ can be made into a left $L^1(\Gamma)$ module, and then we examined the module homomorphisms from $L^1(\Gamma)$ into $L^1(X)$.

In the present paper we let Ω be a measurable subset of Γ , and let L_{Ω} denote the subspace of $L^1(\Gamma)$ consisting of all functions vanishing off Ω . We assume that L_{Ω} is a subalgebra of $L^1(\Gamma)$. Then we discuss the module homomorphisms from L_{Ω} into an arbitrary left $L^1(\Gamma)$ module K. The collection of such homomorphisms we call $\Re_{\Omega}(K)$. The fact that L_{Ω} need not have an approximate identity makes the

Received by the editors June 17, 1969.

AMS 1969 subject classifications. Primary 4680, 2220.

Key words and phrases. Transformation group, quasi-invariant measure, absolutely continuous measure, approximate identity, factorable, group algebra module, module homomorphism, absolutely continuous module, order-free module, subsemigroup, left-translation invariant, orbit topology.

⁽¹⁾ Research supported in part by the National Science Foundation.

problem much more difficult. The fact that L_{Ω} has shifted approximate identities makes the problem solvable, via several reductions.

In §3 we prove that $\Re_{\Omega}(K) = \Re_{\Omega}(K_0) + \Re_{\Omega}(K_{abs})$, where K_0 consists of all elements of K which when composed with elements of $L^1(\Gamma)$ yield the zero element in K, and where K_{abs} consists of all elements of K which can be factored into the composition of an $L^1(\Gamma)$ element and some element of K. Thus the homomorphism problem splits into two parts. Via Theorem 3.5, $\Re_{\Omega}(K_0)$ is the collection of linear, continuous maps from L_{Ω} to K_0 which are zero on L_T where T is a certain measurable subset of G; this set T also turns up in the previous paper [5], it involves the composition operator in a direct way.

Next in §4, we look at $\Re_{\Omega}(K_{abs})$. Let $d\Omega = \{\sigma \in \Gamma : \text{ for every measurable neighborhood } \Phi \text{ of } \sigma, \ \Phi \cap \Omega \text{ has positive measure} \}$. We show that $d\Omega$ splits up into a collection $\mathscr{J}(d\Omega)$ of pairwise disjoint subsets. Then each $R \in \Re_{\Omega}(K_{abs})$ corresponds to a collection $(R_I)_{J \in \mathscr{J}(d\Omega)}$ where $R_J \in \Re_{\Gamma}(K_{abs})$ and such that R_J and R are identical on $\Omega \cap J$. Furthermore, for each J, the homomorphism R_J is uniquely defined. Conversely, any collection $(R_I)_{J \in \mathscr{J}(d\Omega)}$ which is norm-bounded in $\Re_{\Gamma}(K)$ gives rise to a (unique) $R \in \Re_{\Omega}(K)$. Thus the problem of finding $\Re_{\Omega}(K_{abs})$ has reduced to that of finding $\Re_{\Gamma}(K_{abs})$.

In §5 we assume that $\Omega = \Gamma$. We embed K into $\Re_{\Gamma}(K)$ by the map T_K which sends $k \in K$ into right module multiplication by k. Then K_{abs} is injected isometrically onto $[\Re_{\Gamma}(K)]_{abs}$. Denoting the topological conjugate space of K by K^* , we prove that $(K_{abs})^*$ is isometrically isomorphic as a module to $\Re_{\Gamma}(K^*)$. This paves the way for a collection of examples.

Let $Y \subseteq X$ be measurable and let $\mathcal{J}(d\Omega)$ consist of only one element. We close the paper with a study of the module homomorphisms R from L_{Ω} to $L^{1}(X)$ such that for each $f \in L_{\Omega}$, Rf vanishes off Y.

2. Notations. The notations we use are mainly those given in §2 of [5]. Most of the definitions and comments below have already appeared in our preceding texts, but we desire to have them stated here explicitly for reference.

Let Γ be a locally compact group with identity 1 and left Haar measure m. For $f \in L^1(\Gamma)$ and $\sigma \in \Gamma$ we have L^1 -functions f_{σ} , f^{σ} , f' defined by

$$f_{\sigma}(\tau) = f(\sigma\tau), \qquad \tau \in \Gamma,$$

$$f^{\sigma}(\tau) = f(\tau\sigma)\Delta(\sigma), \qquad \tau \in \Gamma,$$

$$f'(\tau) = f(\tau^{-1})\Delta(\tau^{-1}), \qquad \tau \in \Gamma.$$

These functions are connected with the convolution in $L^1(\Gamma)$ by the formulas $f_{\sigma} * g = (f * g)_{\sigma}, f^{\sigma} * g = f * g_{\sigma}, f * g^{\sigma} = (f * g)^{\sigma}$, and $(f * g)' = g' * f' (f, g \in L^1(\Gamma))$.

Let $\Omega \subseteq \Gamma$ be measurable. We put $L_{\Omega} = \{ f \in L^1(\Gamma) : f = 0 \text{ a.e. outside } \Omega \}$ and $d\Omega = \{ \sigma \in \Gamma : \text{ for every measurable neighborhood } \Phi \text{ of } \sigma, m(\Phi \cap \Omega) \neq 0 \}$. Then $\Omega \subseteq d\Omega$ l.a.e. (= locally almost everywhere), i.e. $d\Omega \setminus \Omega$ is locally null. For every $\sigma \in d\Omega$, L_{Γ} contains approximate identities $(u_i)_{i \in I}$ and $(v_j)_{j \in I}$ such that $(u_i)^{\sigma^{-1}} \in L_{\Omega}$ for each i and $(v_j)_{\sigma^{-1}} \in L_{\Omega}$ for each j [5, Lemma 3.1].

For measurable Ω , $\Phi \subseteq \Gamma$, we let $L_{\Omega} * L_{\Phi}$ be the closed linear hull of $\{f * g : f \in L_{\Omega}, g \in L_{\Phi}\}$. Then

(2.1)
$$L_{\Omega} * L_{\Phi} = \operatorname{Cl}\left(\sum_{\sigma \in d\Omega} L_{\sigma\Phi}\right) = \operatorname{Cl}\left(\sum_{\tau \in d\Phi} L_{\Omega\tau}\right).$$

(The first equation is [5, Corollary 3.4]; the second is proved in a similar way as the first.) If Φ is not locally null, then $d\Phi \neq \emptyset$; taking $\Omega = \Gamma$ we obtain from (2.1) that

(2.2)
$$\operatorname{Cl}\left(\sum_{\sigma\in\Gamma}L_{\sigma\Phi}\right)=L_{\Gamma}.$$

In case L_{Ω} is a subalgebra of L_{Γ} we obtain from (2.1) the inclusions $\Omega \sigma \subseteq \Omega$ l.a.e. and $\sigma \Omega \subseteq \Omega$ l.a.e. for all $\sigma \in d\Omega$. Thus, if $f \in L_{\Omega}$ and $\sigma \in d\Omega$, then $f^{\sigma^{-1}} \in L_{\Omega}$ and $f_{\sigma^{-1}} \in L_{\Omega}$. By [5, Corollary 3.5(ii)] $d\Omega$ is a closed semigroup of Γ .

We use the symbol ξ_{Φ} to denote the characteristic function of Φ .

If A is a Banach algebra, an A-module is a (left) module K over A which is also a Banach space, and such that $||f*k|| \le ||f|| ||k||$ for all $f \in A$, $k \in K$ (* denoting the module composition). In particular we shall consider L_{Γ} modules. An element k of an L_{Γ} module K is called factorable if there exist $f \in L_{\Gamma}$ and $k' \in K$ such that k = f * k'. The factorable elements of K form a closed submodule K_{abs} of K [5]. K is said to be absolutely continuous if $K_{abs} = K$. For instance, L_{Γ} is an absolutely continuous L_{Γ} module. It follows that $(K_{abs})_{abs} = K_{abs}$ for every K. It is clear that $\lim_i u_i * k = k$ for every $k \in K_{abs}$ and every approximate identity $(u_i)_{i \in I}$ in L_{Γ} . For $\sigma \in \Gamma$ we define a norm-preserving left shift $k \to k_{\sigma}$ in K_{abs} by

$$(2.3) (f * k')_{\sigma} = f_{\sigma} * k', f \in L_{\Gamma}, k' \in K$$

(see [5]). Then

$$(2.4) f * k_{\sigma} = f^{\sigma} * k, f \in L_{\Gamma}, k \in K_{abs}, \sigma \in \Gamma.$$

For every $k \in K_{abs}$, k_{σ} depends continuously on σ . For all $f \in L_{\Gamma}$, $k \in K_{abs}$ and $k^* \in K^*$, we have by [5]

(2.5)
$$k^*(f * k) = \int_{\Gamma} f(\sigma) k^*(k_{\sigma^{-1}}) d\sigma.$$

3. Reduction to order-free modules. Let K be an L_{Γ} module. We call K order-free if there is no $k \in K$ such that $k \neq 0$ and such that f * k = 0 for every $f \in L_{\Gamma}$. Every absolutely continuous module is order-free, because if K is such a module, then for all $k \in K$, $k \in \text{closure } \{f * k : f \in L_{\Gamma}\}$.

In general, for an L_{Γ} module K we call $\{k \in K : f * k = 0 \text{ for every } f \in L_{\Gamma}\}$ the order submodule K_0 of K. Note that $k \in K$ lies already in K_0 if there is a measurable $\Phi \subseteq \Gamma$, not locally null, such that $L_{\Phi} * k = \{0\}$. (Then for every $\sigma \in \Gamma$, $\{0\} = (L_{\Phi} * k)_{\sigma^{-1}} = (L_{\Phi})_{\sigma^{-1}} * k = (L_{\sigma\Phi}) * k$, so that, by (2.2), $L_{\Gamma} * k = \text{Cl}(\sum_{\sigma \in \Gamma} L_{\sigma\Phi}) * k = \{0\}$.) The

Banach space K/K_0 is made into an L_{Γ} module by the definition

$$f * (k + K_0) = (f * k) + K_0$$
 $(f \in L_{\Gamma}, k \in K).$

This K/K_0 is always order-free.

Most modules we shall deal with are order-free, e.g., $C_{\infty}(X)$, M(X) and $L^{p}(X)$ ($1 \le p \le \infty$). However, modules with order sometimes arise in a natural way. Thus, if K is an L_{Γ} module, we may define a module composition on K^* by the following definition.

- 3.1. Definition. $(f * k^*)(k) = k^*(f' * k), (f \in L_{\Gamma}, k \in K, k^* \in K^*).$
- K^* is then an L_{Γ} module. It is not hard to prove that K^* is order-free if and only if K is absolutely continuous. In fact, there is a natural isometrical module homomorphism of $(K_{abs})^*$ onto $K^*/(K^*)_0$.

Let Ω be a measurable subset of Γ that is not locally null, and assume that L_{Ω} is a subalgebra of L_{Γ} . Let K be an L_{Γ} module.

- 3.2. DEFINITION. A continuous linear map $R: L_{\Omega} \to K$ is an (L_{Ω}, K) -homomorphism if R(f * g) = f * Rg $(f, g \in L_{\Omega})$. The collection of (L_{Ω}, K) -homomorphisms we denote by $\Re_{\Omega}(K)$. When $\Omega = \Gamma$ we suppress the Ω and write $\Re(K)$.
- 3.3. THEOREM. For any L_{Γ} module K, $\Re_{\Omega}(K)$ is the direct sum of $\Re_{\Omega}(K_{abs})$ and $\Re_{\Omega}(K_0)$. In particular, in case K is order-free, then $R(f) \in K_{abs}$ for all $R \in \Re_{\Omega}(K)$ and $f \in L_{\Omega}$.

Proof. If $k \in K_{abs}$, then $\lim_i u_i * k = k$ for every approximate identity $(u_i)_{i \in I}$ in L_{Γ} ; therefore $k \notin K_0$ if $k \neq 0$. Then by the definitions of $\Re_{\Omega}(K_{abs})$ and $\Re_{\Omega}(K_0)$, their intersection is $\{0\}$. Thus we need only show that $\Re_{\Omega}(K) = \Re_{\Omega}(K_{abs}) + \Re_{\Omega}(K_0)$.

Let $R \in \Re_{\Omega}(K)$ be given. Take $\sigma \in d\Omega$. As we mentioned in §2 there exists an approximate identity $(u_i)_{i \in I}$ in L_{Γ} such that for each $i \in I$, $(u_i)^{\sigma^{-1}} \in L_{\Omega}$. Then $f \in L_{\Omega}$ implies that $f_{\sigma^{-1}} \in L_{\Omega}$ and

$$R(f_{\sigma^{-1}}) = \lim_{i} R(u_{i} * f_{\sigma^{-1}}) = \lim_{i} R((u_{i})^{\sigma^{-1}} * f)$$
$$= \lim_{i} [(u_{i})^{\sigma^{-1}} * Rf].$$

Since $(u_i)^{\sigma^{-1}}*Rf \in K_{abs}$ and K_{abs} is closed in K, it follows that $R(f_{\sigma^{-1}}) \in K_{abs}$. We define $R_a \colon L_{\Omega} \to K$ by $R_a(f) = [R(f_{\sigma^{-1}})]_{\sigma}$. Then R_a is a continuous linear map of L_{Ω} into K_{abs} . Take $g \in L_{\Omega}$. For $f \in L_{\Omega\sigma}$ we have $f^{\sigma} \in L_{\Omega}$, so that $f * R_a g = f^{\sigma} * R(g_{\sigma^{-1}}) = R(f^{\sigma} * g_{\sigma^{-1}}) = R(f * g) = f * Rg$. Thus $L_{\Omega\sigma} * (Rg - R_a g) = \{0\}$. It follows that $Rg - R_a g \in K_0$, and we conclude that $R - R_a$ is a continuous linear map $L_{\Omega} \to K_0$. Moreover, for all $f, g \in L_{\Omega}$ we obtain

$$f * R_a g = f * Rg = [(f * Rg)_{\sigma^{-1}}]_{\sigma} = (f_{\sigma^{-1}} * Rg)_{\sigma}$$
$$= [R(f_{\sigma^{-1}} * g)]_{\sigma} = [R((f * g)_{\sigma^{-1}})]_{\sigma}$$
$$= R_{\sigma}(f * g).$$

Thus R_a is a module homomorphism, and consequently, so is $R-R_a$. We obtain $R_a \in \Re_{\Omega}(K_{abs}), R-R_a \in \Re_{\Omega}(K_0)$.

The elements of $\Re_{\Omega}(K_{abs})$ can be characterized in terms of the shift in K_{abs} .

3.4. THEOREM. A continuous linear map $R: L_{\Omega} \to K_{abs}$ is in $\Re_{\Omega}(K_{abs})$ if and only if $R(f_{\sigma^{-1}}) = (Rf)_{\sigma^{-1}}$ for all $f \in L_{\Omega}$ and $\sigma \in d\Omega$.

Proof. Take $R \in \Re_{\Omega}(K_{abs})$, $\sigma \in d\Omega$. By the proof of the preceding theorem, $Rf - [R(f_{\sigma^{-1}})]_{\sigma} \in K_0$ for every $f \in L_{\Omega}$. But of course $Rf - [R(f_{\sigma^{-1}})]_{\sigma} \in K_{abs}$. Therefore $Rf = [R(f_{\sigma^{-1}})]_{\sigma}$. In other words, $(Rf)_{\sigma^{-1}} = R(f_{\sigma^{-1}})$.

Conversely, let $R: L_{\Omega} \to K_{abs}$ be a linear continuous map such that $R(f_{\sigma^{-1}}) = (Rf)_{\sigma^{-1}}$ for all $f \in L_{\Omega}$ and $\sigma \in d\Omega$. For any $f, g \in L_{\Omega}$ and any $k^* \in K^*$ we have by (2.5) that

$$k^*(f * Rg) = \int_{\Gamma} f(\sigma)k^*((Rg)_{\sigma^{-1}}) d\sigma$$

$$= \int_{\Gamma} f(\sigma)\{[R^*(k^*)](g_{\sigma^{-1}})\} d\sigma$$

$$= [R^*(k^*)](f * g) = k^*(R(f * g)),$$

so that f * Rg = R(f * g). Thus $R \in \mathfrak{R}_{\Omega}(K_{abs})$.

In order to describe $\mathfrak{R}_{\Omega}(K_0)$ we need a little more knowledge about the algebra L_{Ω} . There exists an open set $T \subset \Gamma$ such that L_T is the closed linear span of $\{f * g : f, g \text{ in } L_{\Omega}\}$. The proof of this statement and the explicit definition of T are in [5]. (Note that $\mathcal{T} = \emptyset$ because $X = \Gamma$.) In terms of this set T we have a simple characterization of (L_{Ω}, K_0) -homomorphisms.

3.5. THEOREM. A continuous linear map $R: L_{\Omega} \to K_0$ is in $\Re_{\Omega}(K_0)$ if and only if R=0 on L_T .

Proof. If R=0 on L_T , then R(f*g)=0 for all $f, g \in L_{\Omega}$. On the other hand, $L_{\Omega}*K_0=\{0\}$ and $f*Rg \in L_{\Omega}*K_0$. Thus f*Rg=0 and $R \in \Re_{\Omega}(K_0)$. Conversely, for $R \in \Re_{\Omega}(K_0)$ and $f, g \in L_{\Omega}$ we have $R(f*g)=f*Rg \in L_{\Omega}*K_0=\{0\}$. Since R is linear and continuous, R(h)=0 for all $h \in L_T$.

We mention that $\Re_{\Omega}(K_0) = \{0\}$ if $L_T = L_{\Omega}$. In particular, $L_T = L_{\Omega}$ if $1 \in d\Omega$, because then L_{Ω} contains an approximate identity of L_{Γ} . To wit, if $\Omega = \Gamma$ we have $\Re(K_0) = \{0\}$.

4. A decomposition theorem for module homomorphisms. Let Ω be a semigroup. An equivalence relation \sim in Ω is called an "ideal equivalence relation" if $\sigma\tau\sim\tau$ for all σ , $\tau\in\Omega$. Let us define the equivalence relation \approx in Ω by $\sigma\approx\tau$ if and only if $\sigma\sim\tau$ for every ideal equivalence relation \sim in Ω . Then \approx is itself an ideal equivalence relation. Among all ideal equivalence relations \approx is the finest, has the smallest equivalence classes. Explicitly, $\sigma\approx\tau$ if and only if there exists a finite sequence $\sigma=\sigma_1,\sigma_2,\ldots,\sigma_n=\tau$ in Ω such that $(\Omega\sigma_i)\cap (\Omega\sigma_{i+1})\neq\emptyset$ for each i.

The equivalence classes modulo \approx form a set $\mathscr{J}(\Omega)$. If Ω is abelian or contains a right unit, then $\mathscr{J}(\Omega)$ consists of only one element; indeed, if Ω is abelian, then $\sigma \approx \tau \sigma = \sigma \tau \approx \tau$ for all σ , $\tau \in \Omega$, and if Ω has a right unit η , then $\sigma = \sigma \eta \approx \eta$ for all $\sigma \in \Omega$. If $\sigma \in \mathcal{J} \in \mathscr{J}(\Omega)$ and if $\tau \in \Omega$, then $(\tau^2)\sigma = \tau(\tau\sigma)$, so $\Omega \mathcal{J} \subseteq \mathcal{J}$, which means that \mathcal{J} is a left ideal of Ω .

4.1. Lemma. Let Ω be a measurable subsemigroup of Γ , with Ω not locally null. Then there exists a neighborhood Φ of $1 \in \Gamma$ such that $\Omega \cap \Phi J \subseteq J$ for every $J \in \mathcal{J}(\Omega)$. In particular, the ideal equivalence classes are relatively open in Ω , and $f = \sum \{f\xi_J : J \in \mathcal{J}(\Omega)\}$ for all $f \in L_{\Omega}$. Furthermore, $\sigma^{-1}J \cap \Omega = J$ for all $\sigma \in \Omega$ and $J \in \mathcal{J}(\Omega)$.

Proof. Inasmuch as $\Omega\Omega$ contains a nonempty open subset of Γ by [6, 20.17], there is a $\beta \in \Omega$ and a neighborhood Φ of 1 such that $\beta\Phi \subseteq \Omega$. Let $\sigma \in \Omega$. For all $\tau \in \Omega \cap \Phi\sigma$ we have $\beta\tau\sigma^{-1} \in \beta\Phi \subseteq \Omega$ and consequently $\sigma \approx (\beta\tau\sigma^{-1})\sigma = \beta\tau \approx \tau$. Thus, if $\sigma \in J \in \mathscr{J}(\Omega)$, then $\Omega \cap \Phi\sigma \subseteq J$, so that $\Omega \cap \Phi J \subseteq J$. To prove the last statement, we notice that if $\tau \in J$, $\beta \in \Omega$ and $\sigma\beta \in J$, then $\tau \approx \sigma\beta \approx \beta$; therefore $\sigma^{-1}J \cap \Omega \subseteq J$, while the converse inclusion is obvious.

4.2. COROLLARY. Let Ω be as above. If Ω is connected, then $\mathscr{J}(\Omega)$ contains only one element.

Let Ω be a measurable subset of Γ . It is known that if L_{Ω} is an algebra, then $d\Omega$ is a closed subsemigroup of Γ . Furthermore, for any $\sigma \in d\Omega$, we have $\sigma\Omega \subseteq \Omega$ l.a.e. and $\Omega\sigma \subseteq \Omega$ l.a.e. (see §2). Inasmuch as every $J \in \mathscr{J}(d\Omega)$ is a subsemigroup, L_J and $L_{\Omega \cap J}$ are nontrivial algebras, the latter because J is a nonempty relatively open subset of $d\Omega$.

We have sufficient machinery to decompose (L_{Ω}, K) -homomorphisms.

4.3. THEOREM. Let Ω be a measurable subset of Γ that is not locally null. Assume L_{Ω} is an algebra, and K an L_{Γ} module which is order-free. For every $R \in \Re_{\Omega}(K)$ there is a family $\{R_J : J \in \mathcal{J}(d\Omega)\}$ of elements of $\Re(K)$, such that

(*)
$$R(f) = \sum_{J \in \mathcal{J}(d\Omega)} R_J(f\xi_J), \quad f \in L_{\Omega}.$$

Furthermore, $||R|| = \sup \{||R_J|| : J \in \mathcal{J}(d\Omega)\}.$

Conversely, for every norm-bounded family $\{R_J: J \in \mathcal{J}(d\Omega)\}$ in $\Re(K)$ the equation (*) defines an $R \in \Re_{\Omega}(K)$.

Proof. Let $R \in \mathfrak{R}_{\Omega}(K)$ be given to us. Let $\alpha \in d\Omega$, and let $(u_i)_{i \in I}$ be an approximate identity in L_{Γ} with norm 1 and such that $(u_i)_{\alpha^{-1}} \in L_{\Omega}$ for every i. Next let $\sigma \in \Gamma$ and $f \in L_{\sigma\Omega}$. Then $f_{\sigma} \in L_{\Omega}$ and hence $(f_{\sigma})^{\alpha^{-1}} \in L_{\Omega\alpha} \subseteq L_{\Omega}$. Thus

$$\begin{aligned} \{R[(f_{\sigma})^{\alpha^{-1}}]\}_{\sigma^{-1}} &= \lim_{t} \{R[(f_{\sigma})^{\alpha^{-1}} * u_{i}]\}_{\sigma^{-1}} \\ &= \lim_{t} \{R[f_{\sigma} * (u_{i})_{\alpha^{-1}}]\}_{\sigma^{-1}} \\ &= \lim_{t} \{f_{\sigma} * R[(u_{i})_{\alpha^{-1}}]\}_{\sigma^{-1}} = \lim_{t} f * R[(u_{i})_{\alpha^{-1}}]. \end{aligned}$$

In particular, the latter limit exists for any $\sigma \in \Gamma$ and $f \in L_{\sigma\Omega}$. Since the approximate identity is bounded, so is $\{R[(u_i)_{\alpha^{-1}}]: i \in I\}$, which means that if D is defined as $\{f \in L_{\Gamma}: \lim_{i} [f * R(u_i)_{\alpha^{-1}}] \text{ exists}\}$, then D must be a closed linear subspace of L_{Γ} , and by the calculation above, $D \supseteq \bigcup_{\sigma \in \Gamma} L_{\sigma\Omega}$. Thus $D \supseteq \operatorname{Cl}(\sum_{\sigma \in \Gamma} L_{\sigma\Omega}) = L_{\Gamma}$ (see 2.2). Hence we can define $R_{\alpha}: L_{\Gamma} \to K$ by

$$R_{\alpha}(f) = \lim_{i} f^{\alpha} * R((u_i)_{\alpha^{-1}}), \quad f \in L_{\Gamma}.$$

Since $f, g \in L_{\Gamma}$ means that $(f * g)^{\alpha} = f * g^{\alpha}$, evidently $R_{\alpha} \in \Re(K)$. Recapitulating, we have taken an $R \in \Re_{\Omega}(K)$, so that R is defined only on L_{Ω} , and from it we have defined a module homomorphism R_{α} on the whole of L_{Γ} . The particular R_{α} we obtain depends (or at least appears to depend) upon the $\alpha \in d\Omega$ picked at the beginning of the proof. In any case, we next show that R_{α} is an extension of R restricted to $\Omega \cap J$, where $\alpha \in J$.

It is easy to show that $R_{\alpha}=R$ on $L_{\Omega\alpha}$. After all, if $f\in L_{\Omega\alpha}$ then $f^{\alpha}\in L_{\Omega}$ and $R_{\alpha}(f)=\lim_{i}R(f^{\alpha}*(u_{i})_{\alpha^{-1}})=\lim_{i}R(f*u_{i})=R(f)$. Now we determine an ideal equivalence relation on $d\Omega$. Write $\beta\sim\sigma$ if $R_{\beta}=R_{\sigma}$. Let β , $\sigma\in d\Omega$. We must show that $R_{\sigma\beta}=R_{\beta}$. On $L_{\Omega\beta}$, $R_{\beta}=R$ while on $L_{\Omega\sigma\beta}$, $R_{\sigma\beta}=R$. Since $\Omega\sigma\subseteq\Omega$ l.a.e., we have $L_{\Omega\sigma\beta}\subseteq L_{\Omega\beta}$ and $R_{\sigma\beta}=R=R_{\beta}$ on $L_{\Omega\sigma\beta}$. But $R_{\sigma\beta}$ and R_{β} are module homomorphisms on L_{Γ} , so by Theorem 3.4 they are left translation invariant by any element of Γ . This means that they agree not only on $L_{\Omega\sigma\beta}$ but on $L_{\tau\Omega\sigma\beta}$ for any $\tau\in\Gamma$. Hence $R_{\sigma\beta}=R_{\beta}$ on Cl $(\sum_{\tau\in\Gamma}L_{\tau\Omega\sigma\beta})=L_{\Gamma}$ (see 2.2). This proves that $R_{\sigma\beta}=R_{\beta}$ and \sim is an ideal equivalence relation. Next, if $\alpha\in d\Omega$, then there is a $J\in \mathcal{J}(d\Omega)$ such that $\alpha\in J$. For any $\beta\in J$, $R_{\alpha}=R_{\beta}$, so that we may define R_{J} as R_{α} and take away the apparent dependence on the particular $\alpha\in J$. Then $R_{J}=R$ on Cl $(\sum_{\beta\in J}L_{\Omega\beta})$. We note that J is a closed subset of $d\Omega$, since $d\Omega\setminus J$ is relatively open in $d\Omega$ by Lemma 4.1 (where Ω is replaced by $d\Omega$). Because $d\Omega$ is closed in Γ , we know that J is also closed in Γ , so $J\supseteq dJ$. Take $\beta\in d\Omega$. Then $R_{J}=R$ on

$$\operatorname{Cl}\left(\sum_{\sigma\in J}L_{\Omega\sigma}\right)\supseteq\operatorname{Cl}\left(\sum_{\sigma\in J}L_{\Omega\sigma}\right)=\sum_{\tau\in d\Omega}L_{\tau J}\supseteq L_{\beta(\Omega\cap J)}$$
 (by 2.1),

which is just perfect for us because if $f \in L_{\Omega \cap J}$ then $f_{\beta^{-1}} \in L_{\beta(\Omega \cap J)}$ and consequently $R_J(f) = [R_J(f_{\beta^{-1}})]_{\beta} = [R(f_{\beta^{-1}})]_{\beta} = R(f)$ by the translation invariance of R. Thus $R = R_J$ on $L_{\Omega \cap J}$. We have thus shown that R yields the module homomorphism R_J defined on all of L_{Γ} in such a way that R and R_J agree on $\Omega \cap J$. From Lemma 4.1 we infer that for any $f \in L_{\Omega} = L_{\Omega \cap d\Omega}$, $f = \sum_J \{f \xi_J\}$, with the result that $R(f) = \sum_J \{R(f \xi_J)\} = \sum_J \{R_J(f \xi_J)\}$, which proves (*). As for the norm inequalities, $\|R_{\alpha}\| \le \|R\|$ since the approximate identity is bounded by 1. Thus $\|R_J\| \le \|R\|$ for every $J \in \mathscr{J}(d\Omega)$. The inequality $\|R\| \le \sup \{\|R_J\| : J \in \mathscr{J}(d\Omega)\}$ follows from (*). Hence $\|R\| = \sup \{\|R_J\| : J \in \mathscr{J}(d\Omega)\}$.

We have yet to prove the converse. Let $\{R_J: J \in \mathcal{J}(d\Omega)\}$ be a family of elements of $\Re(K)$ such that $\{\|R_J\|: J \in \mathcal{J}(d\Omega)\}$ is bounded. Then (*) defines a continuous linear map $R: L_\Omega \to K$. Now let $\sigma \in d\Omega$. By the last part of Lemma 4.1,

 $\sigma^{-1}J \cap d\Omega = J$ for every $J \in \mathcal{J}(d\Omega)$. This means that for all $f \in L_{\Omega}$,

$$f_{\sigma^{-1}}\xi_J = (f\xi_{\sigma^{-1}J})_{\sigma^{-1}} = (f\xi_{d\Omega}\xi_{\sigma^{-1}J})_{\sigma^{-1}} = (f\xi_J)_{\sigma^{-1}}.$$

Thus

$$R(f_{\sigma^{-1}}) = \sum_{J} R_{J}(f_{\sigma^{-1}} \xi_{J}) = \sum_{J} R_{J}((f \xi_{J})_{\sigma^{-1}})$$

$$= \left(\sum_{J} R_{J}(f \xi_{J})\right)_{\sigma^{-1}} = (R(f))_{\sigma^{-1}},$$

so by Theorem 3.4, R is an (L_{Ω}, K) -module homomorphism.

The theorem says that to any module homomorphism R defined on L_{Ω} there corresponds a collection $(R_J)_{J\in\mathscr{F}(d\Omega)}$ of module homomorphisms on L_{Γ} , and each R_J is the unique extension of R restricted to $\Omega\cap J$. Thus if we have complete knowledge of $\mathfrak{R}(K)$, then the problem of $\mathfrak{R}_{\Omega}(K)$ is completely solved as well. In other words, the problem of characterizing $\mathfrak{R}_{\Omega}(K)$ is reduced to the problem of characterizing $\mathfrak{R}(K)$. Besides what occurs in this paper, there is a discussion of $\mathfrak{R}(K)$ in [3], [8], and [9].

Sometimes Theorem 4.3 takes on a simpler form.

- 4.4. COROLLARY. Assume that Ω has at least one of the following properties:
- (a) Ω is commutative.
- (β) $1 \in d\Omega$.
- (γ) Ω is connected.

Then every $R \in \Re_{\Omega}(K)$ has a unique extension to an $\overline{R} \in \Re(K)$, and $||\overline{R}|| = ||R||$.

Proof. $\mathcal{J}(d\Omega)$ contains but one element.

It would be conceivable, no matter what Γ and $\Omega \subseteq \Gamma$ are, that $\mathscr{J}(d\Omega)$ consisted of but one element. In fact it would be desirable, since then any module homomorphism from L_{Ω} to K could be extended—uniquely—to a module homomorphism from L_{Γ} to K. However, this is not the case. Let Γ be the free group with two generators, α and β , and let Γ have the discrete topology. Let Φ be the subsemigroup generated by 1, α , and β , and let Ω be the subsemigroup $\Phi \alpha \cup \Phi \beta$. We define the continuous, linear map $R: L_{\Omega} \to L_{\Gamma}$ by

$$R(\xi_{(\sigma\sigma)}) = \xi_{(\sigma\sigma)}, \quad \sigma \in \Phi, \qquad R(\xi_{(\sigma\sigma)}) = \xi_{(\sigma\sigma)}, \quad \sigma \in \Phi.$$

Then $R \in \mathfrak{R}_{\Omega}(L_{\Gamma})$, but there is no extension $\overline{R} \in \mathfrak{R}(L_{\Gamma})$ such that R and \overline{R} coincide on L_{Ω} .

From the definition of $\mathscr{J}(d\Omega)$ we see that $\Omega \cap d\Omega$ is partitioned by $\{\Omega \cap J : J \in \mathscr{J}(d\Omega)\}$. This means that $L_{\Omega} = L_{\Omega \cap d\Omega} = \sum_{J} L_{\Omega \cap J}$ where the $L_{\Omega \cap J}$ are pairwise disjoint (except for $\{0\}$) left ideals of L_{Ω} . We prove below that $\{L_{\Omega \cap J} : J \in \mathscr{J}(d\Omega)\}$ forms the finest decomposition of L_{Ω} as the sum of disjoint left ideals of the form L_{θ} .

4.5. THEOREM. Let $(\theta_i)_{i\in I}$ be a set of measurable subsets of Ω such that each L_{θ_i} is a left ideal of L_{Ω} and such that $L_{\Omega} = \operatorname{Cl}(\sum_{i\in I} L_{\theta_i})$ and $L_{\theta_i} \cap L_{\theta_j} = \{0\}$ for $i \neq j$. Then for each i, L_{θ_i} is the closure of $\sum \{L_{\Omega \cap J} : J \in \mathscr{J}(d\Omega), L_{\Omega \cap J} \subseteq L_{\theta_i}\}$.

Proof. Let $P_i: L_{\Omega} \to L_{\theta_i}$ be defined by $P_i(f) = f \xi_{\theta_i}$. Then P_i is continuous, linear, a projection from L_{Ω} onto L_{θ_i} , and $f \in L_{\Omega}$ implies that $f = \sum_{i \in I} P_i(f)$. Fix $i \in I$. Let $f, g \in L_{\Omega}$. Since by assumption L_{θ_i} is a left ideal, and since $P_i(g) \in L_{\theta_i}$, we have $f * [P_i(g)] \in L_{\theta_i}$, and thus

$$P_i(f * g) - f * [P_i(g)] = P_i(f * g) - P_i\{f * [P_i(g)]\} = P_i\{f * [g - P_i(g)]\}.$$

But $g - [P_i(g)] \in L_{\Omega \setminus \theta_i} = \text{Cl}(\sum_{j \neq i} L_{\theta_i})$, so

$$f * (g - [P_i(g)]) \in \operatorname{Cl}\left(\sum_{j \neq i} f * L_\theta\right) \subseteq \operatorname{Cl}\left(\sum_{j \neq i} L_{\theta_j}\right)$$

since each L_{θ_i} is a left ideal in L_{Ω} . Thus $P_i(f*\{g-[P_i(g)]\})=0$. Hence $P_i\in\Re_{\Omega}(L_{\Gamma})$. Hence Theorem 4.3 applies, and there exists a collection $\{R_J:J\in\mathscr{J}(d\Omega)\}\subseteq\Re(L_{\Gamma})$ such that $P_i(f)=\sum_J R_J(f\xi_J)$, for all $f\in L_{\Gamma}$. By a theorem of G. Wendel (see [10]), every $R_J\in\Re(L_{\Gamma})$ determines a $\mu_J\in M(\Gamma)$ such that $R_J(g)=g*\mu_J$, for all $g\in L_{\Gamma}$. Then

$$f\xi_{ heta_{\mathfrak{l}}}=P_{\mathfrak{l}}(f)=\sum_{I}\left(f\xi_{I}
ight)*\mu_{I}, \ \ ext{for all}\ f\in L_{\Omega}.$$

Using this decomposition we show next that for each $J \in \mathscr{J}(d\Omega)$, either $\mu_J = 0$ or $\mu_J = \delta_1$, the point mass at $1 \in \Gamma$. To that end, let $J \in \mathscr{J}(d\Omega)$ such that $\theta_i \cap J$ is not locally null. If $f \in L_{\theta_i \cap J}$ then the formula displayed above yields us $f = f * \mu_J$. Thus $L_{\theta_i \cap J} = L_{\theta_i \cap J} * \mu_J$, so that $L_{\theta_i \cap J} * (\delta_1 - \mu_J) = 0$. Then $\delta_1 - \mu_J$ lies in the order submodule of $M(\Gamma)$. However, $M(\Gamma)$ is order-free. Consequently $\delta_1 - \mu_J = 0$, or $\delta_1 = \mu_J$. On the other hand, if J is such that $J \cap \theta_i$ is locally null, then by a similar reasoning, $\mu_J = 0$. Finally, we note that $(f\xi_J) * \delta_1 = f\xi_J$, while $(f\xi_J) * 0 = 0$, so that $f \in L_\Omega$ implies that

$$f\xi_{\theta_{i}} = \sum \{f\xi_{J}: J \in \mathcal{J}(d\Omega), \, \mu_{J} = \delta_{1}\}.$$

Since every element of L_{θ_i} is of the form $f\xi_{\theta_i}$ for an appropriate $f \in L_{\Omega}$, we see that we have decomposed L_{θ_i} as hypothesized. (The closure appearing in the statement of the theorem merely preserves the widespread convention that the sum of a collection of spaces contains only finite sums of elements of the spaces involved.)

We remark that there may very well be finer decompositions of L_{Ω} into a sum of ideals not of the form L_{θ} . Thus, if μ is an idempotent measure on Γ , then L_{Γ} is the direct sum of $L_{\Gamma} * \mu$ and $L_{\Gamma} * (\delta_1 - \mu)$, while $\mathscr{J}(\Gamma)$ contains only one element.

Let us see how §§3 and 4 have simplified the problem of finding $\mathfrak{R}_{\Omega}(K)$ -module homomorphisms for an arbitrary L_{Γ} module K. In the first place, we found that $\mathfrak{R}_{\Omega}(K) = \mathfrak{R}_{\Omega}(K_0) \oplus \mathfrak{R}_{\Omega}(K_{abs})$, in Theorem 3.3, and then described as completely as we will here the space $\mathfrak{R}_{\Omega}(K_0)$, which from Theorem 3.5 turns out to be the collection of linear, continuous maps from L_{Ω} to K_0 which map L_T into 0. That done, we directed our attention to those K which were order-free, showing that $R \in \mathfrak{R}_{\Omega}(K_{abs})$ meant that R corresponded to a collection $\{R_J: R_J \in \mathfrak{R}(K_{abs}), J \in \mathscr{J}(d\Omega)\}$ (Theorem

- 4.3). Consequently we know $\Re(K_{abs})$ provided we know $\Re(K_{abs})$, which in this case is none other than $\Re(K)$ if K is order-free, by Theorem 3.3. Later we will use these results in special examples.
- 5. Module homomorphisms on L_{Γ} . In this section we assume that $\Omega = \Gamma$. For any L_{Γ} module K whatsoever, we can determine a special subspace of $\Re(K)$ in the following way. For $k \in K$, let $T_K k \in \Re(K)$ be defined by $(T_K k)(f) = f * k \ (f \in L_{\Gamma})$. Indeed K is order-free if and only if T_K is injective. Then we have
- 5.1. THEOREM. (i) The definition (f * R)(g) = R(g * f) $(f, g \in L_{\Gamma}, R \in \Re(K))$ turns $\Re(K)$ into an order-free L_{Γ} module, thereby rendering T_K a module homomorphism of K into $\Re(K)$.
 - (ii) If K is absolutely continuous, T_K is an isometry.
 - (iii) The restriction of T_K to K_{abs} is an isometry of K_{abs} onto $\Re(K)_{abs}$.
 - (iv) $T_{\Re(K)}$ is an isometry of $\Re(K)$ onto $\Re(\Re(K))$.
- **Proof.** (i) Except for showing that $\Re(K)$ is order-free the proof is a straightforward calculation. But if $L_{\Gamma} * R = \{0\}$, then $R(L_{\Gamma}) = R(L_{\Gamma} * L_{\Gamma}) = L_{\Gamma} * R(L_{\Gamma}) = \{0\}$, so R = 0. To prove (ii), we note first that if K is absolutely continuous, then K is order-free, so T_K is injective. Next, if $(u_i)_{i \in I}$ is an approximate identity of norm 1 in L_{Γ} and if $K \in K$, then

$$||T_K k|| = \sup \{||f * k|| : f \in L_{\Gamma}; ||f||_1 \le 1\}$$

$$\ge \lim_i ||u_i * k|| = ||k||.$$

On the other hand, since K is a Banach module, $||T_K k|| \le ||k||$. Now we prove (iii). The isometry we already have. Since K_{abs} is absolutely continuous, $T_K k$ is factorable in $\Re(K)$ for every $k \in K_{abs}$. Thus T_K maps K_{abs} into $\Re(K)_{abs}$. To show the map restricted to K_{abs} is onto $\Re(K)_{abs}$, let $R \in \Re(K)_{abs}$. Then there exist $f \in L_\Gamma$ and $R' \in \Re(K)$ such that R = f * R'. Thus for all $g \in L_\Gamma$,

$$\{T_{\kappa}[R'(f)]\}(g) = g * (R'f) = (f * R')(g) = R(g).$$

Consequently, $R = T_K(R'(f))$. Since L_Γ is factorable, there are $f_1, f_2 \in L_\Gamma$ such that $f = f_1 * f_2$. Then $R = T_K(R'(f_1 * f_2)) = T_K(f_1 * R'(f_2)) \in T_K(K_{abs})$, which is what we needed to prove. Finally we prove (iv), which is simple now. We have natural surjective isometries

$$\Re(K) \to \Re(K_{abs}) \to \Re(\Re(K)_{abs}) \to \Re(\Re(K)),$$

the middle one coming from (iii) and the outer two by the comment following Theorem 3.4. The composition of these isometries is just $T_{\Re(K)}$.

5.2. Theorem. Let K be an L_{Γ} module. Every $k^* \in K_{abs}^*$ determines a $Qk^* \in \Re(K^*)$ by

$$[(Qk^*)f](k) = k^*(f' * k) \quad (f \in L_{\Gamma}, k \in K).$$

(If $K=K_{abs}$, then $Q=T_{K^*}$.) The map Q defined by this equation is an isometric module homomorphism of K_{abs}^* onto $\Re(K^*)$.

Proof. Certainly Qk^* is linear and continuous as a map from L_{Γ} to K^* . Also $\|Qk^*\| \le \|k^*\|$. Once one remembers that (f*g)' = g'*f', there is no trouble in showing that $Qk^* \in \Re(K^*)$. Then Q is a linear map $K_{abs}^* \to \Re(K^*)$ and $\|Q\| \le 1$. The proof that Q is a module homomorphism is straightforward. Because the domain of Q is K_{abs}^* , $Qk^* = 0$ only if $k^* = 0$. Thus Q is injective and we are done if we show it is surjective and $\|Qk^*\| \ge \|k^*\|$ for all $k^* \in K_{abs}^*$. Let $R \in \Re(K^*)$, and let $(u_i)_{i \in I}$ be an approximate identity in L_{Γ} , with $\|u_i\| \le 1$ for each i. If $f \in L_{\Gamma}$ and $j \in K$, then

$$(Rf)(j) = \lim_{i} (R(f * u_{i}))(j)$$

= $\lim_{i} (f * Ru_{i})(j) = \lim_{i} (Ru_{i})(f' * j).$

Thus $\lim_{i} (Ru_{i})(k)$ exists for every $k \in K_{abs}$ and

$$\|\lim_{i} (Ru_{i})(k)\| \leq \sup_{i} \|R\| \|u_{i}\| \|k\| \leq \|R\| \|k\|.$$

Therefore we can define $k^* \in K_{abs}^*$ by $k^*(k) = \lim_i (Ru_i)(k)$, for $k \in K_{abs}^*$, with the result that $||k^*|| \le ||R||$. Now by the existence proof of $\lim_i (Ru_i)(k)$ we have that for all $f \in L_\Gamma$ and $j \in K$, $(Rf)(j) = \lim_i (Ru_i)(f'*j) = k^*(f'*j) = [(Qk^*)f](j)$. Thus $R = Qk^*$ and $||Qk^*|| \ge ||k^*||$. This finishes the proof of the theorem.

With the aid of Theorems 5.1 and 5.2 we can compute $\Re(K)$ for most of the modules described in [5]. First, assume that X is a locally compact space, and Γ a group of homeomorphisms of X such that the map $(\sigma, x) \to \sigma x$ $(\sigma \in \Gamma, x \in X)$ is jointly continuous. Let C_X be the Banach space of all continuous functions k on X such that for every $\varepsilon > 0$ the set $\{x \in X : |k(x)| \ge \varepsilon\}$ is compact. Then C_X is an L_Γ module with the module composition defined by

$$f * k(x) = \int_{\Gamma} f(\sigma)k(\sigma^{-1}x) d\sigma, \qquad x \in X,$$

for $f \in L_{\Gamma}$, $k \in C_X$. (For details, see [4], [5].) We can make M(X) an L_{Γ} module by noting that it is the dual of C_X . Definition 3.1 yields

$$(f*\mu)k = \mu(f'*k), \quad f \in L_{\Gamma}, \mu \in M(X), k \in C_X,$$

and it turns out that $(f * \mu)(k) = \int_X \int_{\Gamma} k(\sigma x) f(\sigma) d\sigma d\mu(x)$.

Since C_X is absolutely continuous, Theorem 5.2 tells us that $\Re(M(X))$ is canonically isomorphic to M(X). (Unfortunately we have not been able to obtain a description of $\Re(C_X)$ itself!)

Now let X possess a quasi-invariant measure m_X . We denote by L_X^p $(1 \le p \le \infty)$ the space usually called $L^p(X)$ or $L_p(X)$, and write L_X instead of $L^1(X)$. The natural embedding $L_X \to M(X)$ makes L_X a submodule of M(X) (see [4]), and therefore induces an embedding $\Re(L_X) \to \Re(M(X)) = M(X)$. The image of $\Re(L_X)$ in M(X) is

 $N = \{ \mu \in M(X) : \text{ for every } f \in L_{\Gamma}, f * \mu \text{ is absolutely continuous with respect to } m_X \}.$ This space has been investigated in [4], and in particular several conditions equivalent to N equaling M(X) appear there.

Since $L_X^{\infty} = (L_X)^*$ we can use (3.1) to make an L_{Γ} module out of L_X^{∞} . It turns out that for $f \in L_{\Gamma}$ and $k \in L_X^{\infty}$,

$$f * k(x) = \int_{\Gamma} f(\sigma)k(\sigma^{-1}x) d\sigma$$
, l.a.e. $x \in X$.

We know L_x is itself absolutely continuous; hence, again by Theorem 5.2, $\Re(L_x^{\infty})$ is isomorphic to L_x^{∞} .

For $1 \le p \le \infty$, in [4], we introduced convolution products $L_T \times L_X^p \to L_X^p$, of which the module operations on L_X and L_X^∞ , mentioned above, are special cases. For $1 \le p < \infty$, L_X^p is an absolutely continuous module, and in particular, if $1 , then by Theorem 5.2, <math>\Re(L_X^p)$ is isomorphic to L_X^p .

Another space whose module homomorphisms we can describe is $L_{\Gamma} \cap L_{\Gamma}^{p}$, $p \in (1, \infty]$, which we look at through the eyes of $K = C_{\Gamma} + L_{\Gamma}^{q}$, where 1/p + 1/q = 1. Now K is the linear span of $\{h+k: h \in C_{\Gamma}, k \in L_{\Gamma}^{q}\}$. Under the norm $\|j\| = \inf \{\|h\| + \|k\| : h \in C_{\Gamma}, k \in L_{\Gamma}^{q}, j = h + k\}$ and under the convolution defined by

$$f * j(\sigma) = \int_{\Gamma} f(\tau)j(\tau^{-1}\sigma) d\tau$$
, l.a.e. $\sigma \in \Gamma$,

K becomes an absolutely continuous L_{Γ} module. The dual space $K^* = L_{\Gamma} \cap L_{\Gamma}^p$ has for its norm $\|g\| = \max (\|g\|_1, \|g\|_p)$ (see [7, Theorem 5]). The convolution in K^* , defined by the familiar formula in (3.1) can be reduced to the formula

$$f * g(\sigma) = \int_{\Gamma} f(\tau)g(\tau^{-1}\sigma) d\sigma \qquad (f \in L_{\Gamma}, g \in L_{\Gamma} \cap L_{\Gamma}^{p}, \sigma \in \Gamma).$$

By Theorem 5.2, $\Re(L_{\Gamma} \cap L_{\Gamma}^p)$ is canonically isomorphic to $L_{\Gamma} \cap L_{\Gamma}^p$.

There is a connection between K_{abs} and $\Re(K)$ deeper than a superficial appraisal might reveal. It becomes apparent if we consider $K \to K_{abs}$ and \Re as functors in the category of all L_{Γ} modules with continuous module homomorphisms as morphisms. It is obvious that \Re is related to the well-known functor Hom in the category of all modules over a ring. Writing L instead of L_{Γ} , in homological language we may denote $\Re(K)$ by $\operatorname{Hom}_L(L,K)$. Less obvious is the analogy between the functor $K \to K_{abs}$ and the tensor product, reflected in the following theorem.

5.3. THEOREM. Let K be an L_{Γ} module. Then for any L_{Γ} module K' and any continuous bilinear map $T: L_{\Gamma} \times K \to K'$ that has the property T(f * g, k) = f * T(g, k) = T(g, f * k), there is a unique continuous homomorphism T' from K_{abs} into K' such that the diagram

$$L_{\Gamma} \times K \longrightarrow K_{\text{abs}}$$

$$T \qquad \qquad T'$$

$$K'$$

is commutative (where the horizontal arrow represents the module composition $(f, k) \rightarrow f * k$).

Proof. Let $(u_i)_{i \in I}$ be an approximate identity in L_{Γ} . Take $k \in K_{abs}$. There exist $f \in L_{\Gamma}$ and $j \in K$ such that f * j = k. Then

$$T(f,j) = \lim_{i} T(f * u_i, j)$$

$$= \lim_{i} T(u_i, f * j) = \lim_{i} T(u_i, k).$$

Thus we can define a linear $T': K_{abs} \to K'$ by $T'(k) = \lim_i T(u_i, k)$, for $k \in K_{abs}$. The rest is straightforward.

Thus it looks reasonable to write $K_{abs} = L \otimes_L K$. In this terminology, Theorem 5.2 takes the form

$$\operatorname{Hom}_L(L, \operatorname{Hom}_C(K, C)) = \operatorname{Hom}_C(L \otimes_L K, C)$$
, C the complex numbers,

which is a well-known formula in the algebraic theory. A theory relating Banach module homomorphisms to tensor product theory has been begun by Máté [8] and developed systematically by Rieffel [9].

- 6. Module homomorphisms from L_{Ω} to L_{Y} . As we saw in §5 there is a natural embedding $\Re(L_{X}) \to M(X)$. In the sequel we identify each $R \in \Re(L_{X})$ with the corresponding element of M(X); thus $\Re(L_{X}) = N \subseteq M(X)$. Let $\Omega \subseteq \Gamma$ and $Y \subseteq X$ be measurable. We are going to consider those $\Re(L_{X})$ -module homomorphisms $L_{\Gamma} \to L_{X}$ which map L_{Ω} into $L_{Y} = \{ f \in L_{X} : f = 0 \text{ a.e. outside } Y \}$. We denote the collection of such homomorphisms by $\Re_{\Omega,Y}$. To aid the discussion we make the following definition.
- 6.1. DEFINITION. Let $A_{\Omega,Y} = \{x \in X : \sigma x \in Y \text{ for locally almost all } \sigma \in \Omega\}$. We note that $A_{\Omega,Y}$ is measurable, by Theorem 3.15 of [5].
 - 6.2. LEMMA. If $\mu \in \Re(L_X)$ and if supp $\mu \subseteq A_{\Omega,Y}$, then $\mu \in \Re_{\Omega,Y}$.

Proof. We need to show that $L_{\Omega} * \mu \subseteq L_{Y}$. To do that, we let $k \in L_{X}^{\infty}$ be such that $k|_{Y} = 0$, and we let $f \in L_{\Omega}$. We will show that $f * \mu(k) = 0$. For any $x \in \text{supp } \mu \subseteq A_{\Omega,Y}$, we have $\sigma x \in Y$ for locally almost all $\sigma \in \Omega$, so that $k(\sigma x) = 0$ l.a.e. on Ω , resulting in $\int_{\Gamma} f(\sigma)k(\sigma x) d\sigma = 0$. Therefore

$$(f * \mu)(k) = \int_{X} \int_{\Gamma} f(\sigma)k(\sigma x) d\sigma d\mu(x)$$
$$= \int_{\text{supp } \mu} \int_{\Gamma} f(\sigma)k(\sigma x) d\sigma d\mu(x) = 0,$$

which completes the proof.

In the event that Y is closed in X, we can give a complete description of $\Re_{\Omega,Y}$.

6.3. THEOREM. If Y is closed in X, then $\Re_{\Omega,Y} = \{ \mu \in M(X) : \mu \in \Re(L_X) \text{ and } \sup \mu \subseteq A_{\Omega,Y} \}.$

Proof. Because of Lemma 6.2 all we must prove is that if $\mu \in \Re_{\Omega,Y}$, then supp $\mu \subseteq A_{\Omega,Y}$. By assumption, $L_{\Omega} * \mu \subseteq L_{Y}$. Then for any $k \in C_{X}$ such that $k|_{Y} = 0$, we have $(f * \mu)(k) = 0$ for all $f \in L_{\Omega}$. Let $\sigma \in d\Omega$, and let $(u_{i})_{i \in I}$ be an approximate identity for L_{Γ} such that $(u_{i})_{\sigma^{-1}} \in L_{\Omega}$. Then

$$0 = ((u_i)_{\sigma^{-1}} * \mu, k) = (\mu, ((u_i)_{\sigma^{-1}})' * k)$$

= $(\mu, (u_i')^{\sigma} * k) = (\mu, (u_i)' * k_{\sigma})$

which converges to $\mu(k_{\sigma})$ because C_X is absolutely continuous. Since $\sigma^{-1}Y$ is closed, supp $\mu \subseteq \sigma^{-1}Y$, for any $\sigma \in d\Omega$. But $\bigcap_{\sigma \in d\Omega} \sigma^{-1}Y \subseteq A_{\Omega,Y}$. Hence supp $\mu \subseteq A_{\Omega,Y}$.

6.4. COROLLARY. If Y is closed in X, then $A_{\Omega,Y} = \bigcap_{\sigma \in d\Omega} \sigma^{-1} Y$, and hence $A_{\Omega,Y}$ is closed.

Recall that we have identified $\Re(L_X)$ with a subspace $N = \{\mu \in M(X) : L_\Gamma * \mu \subseteq L_X\}$ of M(X). Obviously this N should play an important role in our discussion of $A_{\Omega,Y}$. Under the restriction that N = M(X), it is not hard to prove that $A_{\Omega,Y} = A_{\Omega,Y'}$ if Y = Y' l.a.e. (see the implication (i) \Rightarrow (iii) of Theorem 5.6 in [4]). Without the restriction this is not true, as the following example shows: $\Gamma = \{1\}$, Y = Y' only l.a.e. (However, from Y = Y' l.a.e. it always follows that $A_{\Omega,Y} = A_{\Omega,Y'}$ l.a.e.) Under the condition that N = M(X) we have a neater conclusion for Theorem 6.3.

6.5. COROLLARY. If Y is closed in X and if N = M(X), then

$$\Re_{\Omega,Y} = \{ \mu \in M(X) : \operatorname{supp} \mu \subseteq A_{\Omega,Y} \}.$$

Let $\Omega \subseteq \Gamma$ be measurable and such that L_{Ω} is a subalgebra of L_{Γ} . For any Banach module K over L_{Ω} we denote by $\mathfrak{R}_{\Omega}(K)$ the space of all continuous module homomorphisms $L_{\Omega} \to K$ (since every L_{Γ} module is an L_{Ω} module this notation is consistent with our earlier use of the symbol $\mathfrak{R}_{\Omega}(K)$).

In particular we consider measurable subsets Y of X for which $L_{\Omega}*L_{Y} \subseteq L_{Y}$. For such Y, L_{Y} is an L_{Ω} module. Theorem 4.3 gives an injection $\Re_{\Omega}(L_{Y}) \to \prod_{J \in \mathscr{J}(d\Omega)} \Re_{\Omega \cap J,Y}$. In case $\mathscr{J}(d\Omega)$ consists of only one element, $\Re_{\Omega}(L_{Y})$ may be identified with $\Re_{\Omega,Y}$. Then by Lemma 6.2, $\Re_{\Omega}(L_{Y}) \supseteq \{\mu \in M(X) : \text{supp } \mu \subseteq A_{\Omega,Y}\}$ and if N = M(X), the two sets are equal if Y is closed (Corollary 6.5). If N = M(X), it seems reasonable to ask whether we have equality for all Y, still assuming $\mathscr{J}(d\Omega)$ to contain only one element.

Now N=M(X) if $X=\Gamma$, and $\mathscr{J}(d\Omega)$ contains only one element if Γ is abelian (Corollary 4.4). T. A. Davis states a theorem affirming the inclusion $\Re_{\Omega}(L_Y) \subseteq \{\mu \in M(X) : \mu \text{ is concentrated on } A_{\Omega,Y}\}$ for the case Γ is abelian, $X=\Gamma$, and $Y=\Omega$ (Theorem 3.5(2) in [2]). Unfortunately, however, his proof seems to be faulty.

By the same Corollary 4.4, $\mathscr{J}(d\Omega)$ contains only one element if $1 \in d\Omega$. For this case F. Birtel [1] proves $\Re_{\Omega}(L_Y) = \{\mu \in M(X) : \text{supp } \mu \subseteq A_{\Omega,Y}\}$ under the assumptions $X = \Gamma$, $Y = \Omega$, Ω is a closed semigroup containing 1 whose interior is

dense in Ω . In Theorem 6.7 we prove $\Re_{\Omega}(L_Y) = \{\mu \in M(X) : \mu \text{ is concentrated on } A_{\Omega,Y}\}$ if $1 \in d\Omega$ and N = M(X). In Corollary 6.8 we prove $\Re_{\Omega}(L_Y) = \{\mu \in M(X) : \sup \mu \subseteq A_{\Omega,Y}\}$ if $1 \in d\Omega$ and if for every $f \in L_{\Gamma}$ and $k \in L_X^{\infty}$, $\int_{\Gamma} f(\sigma)k(\sigma^{-1}x) d\sigma$ depends continuously on X, which is true for $X = \Gamma$.

We employ an auxiliary topology on X, called the orbit topology and designated by \mathcal{O} , which is generated by sets of the form Φx , Φ open in Γ , $x \in X$. This topology is studied in [5]. In what follows we shall use the facts that in case N = M(X), \mathcal{O} coincides with the original topology of X on each orbit Γx , and that for $f \in L_{\Gamma}$ and $k \in L_{\infty}^{\infty}$, the function $x \to \int_{\Gamma} f(\sigma)k(\sigma^{-1}x) d\sigma$ is \mathcal{O} -continuous.

6.6. Lemma. In the topology \mathcal{O} , $A_{\Omega,Y}$ is closed.

Proof. Take $x \in X$. Then $x \in A_{\Omega,Y}$ if and only if $\int_{\Gamma} f(\sigma) \xi_{X \setminus Y}(\sigma x) d\sigma = 0$ for every $f \in L_{\Omega}$. Now

$$\int_{\Gamma} f(\sigma) \xi_{X \setminus Y}(\sigma x) d\sigma = \int_{\Gamma} f(\sigma^{-1}) \Delta(\sigma^{-1}) \xi_{X \setminus Y}(\sigma^{-1} x) d\sigma$$
$$= \int_{\Gamma} f'(\sigma) \xi_{X \setminus Y}(\sigma^{-1} x) d\sigma$$

is \mathcal{O} -continuous (see Lemma 4.9 of [5]); thus A is \mathcal{O} -closed.

6.7. THEOREM. Let $\Omega \subseteq \Gamma$, $Y \subseteq X$ be measurable and such that L_{Ω} is a subalgebra of L_{Γ} , and $L_{\Omega} * L_{Y} \subseteq L_{Y}$. Assume N = M(X). If $1 \in d\Omega$, then $\Re_{\Omega}(L_{Y}) = \{\mu \in M(X) : \mu \text{ is concentrated on } A_{\Omega,Y}\}$.

Proof. Let $\mu \in \Re_{\Omega}(L_Y)$. We note that Γx is a Borel set (Theorem 5.10 of [4]) for each $x \in X$. Since μ is bounded, μ is concentrated on a sigma-compact set. Inasmuch as any compact set can intersect only countably many orbits (see Lemma 4.6 of [5]), there exists a sequence a_1, a_2, \ldots in X such that μ is concentrated on $\bigcup_n \Gamma a_n$. For each n define μ_n by $d\mu_n = \xi_{\Gamma a_n} d\mu$ and put $Y_n = Y \cap \Gamma a_n$. Then $L_\Omega * L_{Y_n} \subseteq L_{Y_n}$, $\mu = \sum \mu_n$ and $L_\Omega * \mu_n \subseteq L_{Y_n}$ for each n. It suffices to prove that each μ_n is concentrated on $A_{\Omega,Yn}$. In other words, we may assume the existence of an $a \in X$ such that μ is concentrated on Γa and $Y \subseteq \Gamma a$. Since $1 \in d\Omega$, by Theorem 5.6 of [5] $L_\Omega * L_Y = L_Y$. Let $\Omega_0 = \Omega \cap d\Omega$, $T = \{x \in X :$ there exist compact sets $\Phi \subseteq \Omega$ and $D \subseteq Y$ such that $\int_{\Gamma} \xi_{\Phi}(\sigma) \xi_D(\sigma^{-1}x) d\sigma > 0\}$. Clearly $T \subseteq \Gamma a$. According to the proof of Theorem 5.5 of [5], we have $\Omega_0 = \Omega$ l.a.e., T = Y l.a.e. and $\Omega_0 T = T$. Then $T \subseteq A_{\Omega_0,T} = A_{\Omega,T} = A_{\Omega,Y}$.

Since $1 \in d\Omega$, L_{Ω} contains an approximate identity $(u_i)_{i \in I}$ of L_{Γ} . If $k \in C_X$ and k = 0 on \overline{T} , then because $u_i * \mu \in L_{\Omega} * \mu \subseteq L_Y = L_T$,

$$\mu(k) = \lim_{i} \mu(u_i * k) = \lim_{i} (u_i * \mu)(k) = 0.$$

This means that supp $\mu \subseteq \overline{T}$ so that μ is concentrated on $\overline{T} \cap \Gamma a$. Now as we remarked in the preceding lemma, $A_{\Omega,Y}$ is \mathcal{O} -closed. Because the original topology

and the \mathcal{O} -topology coincide on Γa this means that $A_{\Omega,Y} \cap \Gamma a$ is relatively closed in Γa . Since $T \subseteq A_{\Omega,Y} \cap \Gamma a$ we obtain $\overline{T} \cap \Gamma a \subseteq A_{\Omega,Y} \cap \Gamma a \subseteq A_{\Omega,Y}$. Thus μ is concentrated on $A_{\Omega,Y}$.

- 6.8. COROLLARY. Let Ω , Y be as in the preceding theorem. Assume that for every $f \in L_{\Gamma}$ and every $k \in L_X^{\infty}$, $\int_{\Gamma} f(\sigma)k(\sigma^{-1}x) d\sigma$ depends continuously on $x \in X$. Now if $1 \in d\Omega$, then $\Re_{\Omega}(L_{Y}) = \{ \mu \in M(X) : \text{supp } \mu \subseteq A_{\Omega,Y} \}.$
- **Proof.** Then the orbit topology and the original topology are the same (Lemma 4.9 of [5]), and $A_{\Omega,Y}$ is thus closed in X. Furthermore, the assumption implies that N = M(X) (Theorem 3.3 of [5]). Thus we can use the preceding theorem.

We have one comment: $\mu \in M(X)$ may be concentrated on $A_{\Omega,Y}$ without being supported on $A_{\Omega,Y}$. Let $\Gamma = \mathbf{R}$ be the additive group of the reals, $\Omega = (0, \infty)$, $X = \mathbf{R} \cup \{\infty\}$ the one-point compactification of \mathbf{R} , with usual action of Γ on X, and $m_X(\{\infty\})=1$, $m_X|R=$ Lebesgue measure, and $Y=(0,\infty)$. Then $A_{\Omega,Y}=[0,\infty)$. Let $\mu = \sum_{n=1}^{\infty} 2^{-n} \delta_n$ where δ_n is point mass at n. Then μ is concentrated on $A_{\Omega,Y}$ but not supported on $A_{\Omega,Y}$.

REFERENCES

- 1. F. T. Birtel, On a commutative extension of a Banach algebra, Proc. Amer. Math. Soc. 13 (1962), 815-822. MR 31 #624.
- 2. T. A. Davis, The Wiener-Pitt phenomenon on semigroups, Proc. Cambridge Philos. Soc. 59 (1963), 11-24. MR 26 #1701.
- 3. S. L. Gulick, T.-S. Liu and A. C. M. van Rooij, Group algebra modules. I, Canad. J. Math. 19 (1967), 133–150. MR 36 #5712.
 - 4. —, Group algebra modules. II, Canad. J. Math. 19 (1967), 151-173. MR 36 #5713.
 - 5. ——, Group algebra modules. III, Trans. Amer. Math. Soc. 152 (1970), 561-579.
- 6. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963. MR **28** #158.
- 7. T.-S. Liu and J.-K. Wang, Sums and intersections of Lebesgue spaces, Math. Scand. 23 (1968), 241-251.
 - 8. L. Máté, Multipliers and topological tensor products (to appear).
- 9. M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443-491. MR 36 #6544.
- 10. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246.

University of Maryland, College Park, Maryland 20742 University of Massachusetts, AMHERST, MASSACHUSETTS 01002 CATHOLIC UNIVERSITY,

NIJMEGEN, THE NETHERLANDS